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A B S T R A C T   

The installation of barricades effectively prevents falls from height (FFH) on construction sites. Common ap
proaches for detecting missing barricades (e.g., manual inspection of the site or three-dimensional models) are 
not practical due to two inherent challenges: (1) these approaches are labor-intensive and time-consuming; and 
(2) FFH hazards are dynamic and changing as construction work progresses. To address these challenges, two 
computer vision-based detection approaches, including Masks Comparison Approach (MCA) and Missing Object 
Detection Approach (MODA), are developed in this study to automatically detect missing barricade. The perfor
mance of the proposed approaches and their benefits and implementation challenges were evaluated through a 
case study. The results demonstrate that MODA can achieve better performance and have several implementation 
advantages over MCA. The average precision and average recall for MODA were 57.9% and 73.6%, respectively. 
These two approaches can help site managers take action promptly to reduce the risks of FFH accidents.   

1. Introduction 

Fall from height (FFH) has been identified as the major contributor to 
fatalities in the construction industry [50]. One of the most common 
practices to prevent workers from FFH is installing barricades or edge 
protection [46]. According to the Workplace Safety and Health Council 
[68], barricades are required for all building edges and edges of exca
vations, holes, floor openings, and roofs in construction sites to prevent 
FFH. However, missing barricade is a serious problem in construction. 
For example, Zlatar et al. [70] analyzed 114 cases and found that 
guardrails, handrails, barriers, and edge protection failed while working 
at heigh, accounting for 33% of safety management measures. Likewise, 
in Navon and Kolton’s [37] work, they conducted interviews in 12 
construction sites and found a lack of protective measures for openings 
in the external wall or at the edge of a slab. Furthermore, parts of the 
guardrails were missing at times. Similarly, in Singapore, open sides and 
missing guardrails, barriers, or barricades are perennial problems in 
construction sites (e.g., [2,47]). Therefore, safety inspections and 
monitoring are required to be conducted based on these requirements to 
minimize the FFH risk of construction sites. 

Planning for FFH risks (e.g., open edges of construction floors) can be 
undertaken before construction and may be performed using manual 
observation of floor plans and/or three-dimensional (3D) models 

[46,65]. However, hazards can change once construction commences. 
Furthermore, manual safety compliance checks during construction can 
be labor-intensive, time-consuming, and inconsistent. As a result, safety 
compliance is difficult to be assured, and therefore FFH remains a major 
risk for construction sites. 

To address the drawbacks of manual monitoring approaches, a 
computer vision-based approach is proposed in this study to automati
cally detect missing barricades for the mitigation of FFH risks in con
struction sites. Despite the proliferation of computer vision solutions for 
construction safety [15,25,28], the authors were not able to find any 
research focusing on the detection of missing barricades. To achieve 
accurate detection of missing barricade, our study focuses on addressing 
the following three research questions:  

(1) What are the possible computer vision-based approaches for 
automatic detection of missing barricades on construction sites?  

(2) Which approach can achieve higher accuracy for detecting 
missing barricades? 

(3) Which approach is more feasible to be implemented on con
struction sites? 

To answer the above research questions, this study identified two 
possible computer vision-based approaches or strategies for detecting 
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missing barricades, including the masks comparison approach (MCA) and 
the missing object detection approach (MODA). MCA uses computer vision 
techniques to detect the barricades from each frame and then infer if a 
barricade is missing by finding the difference between consecutive 
frames. MODA applies computer vision techniques to detect missing 
barricade as an object. It must be noted that MCA and MODA are 
different from algorithms in the sense that they are higher-level strate
gies to detect missing barricades. Furthermore, it must be emphasized 
that detecting the absence of an object is not as straightforward as 
detecting the presence of an object. To validate the performance of our 
proposed approaches, we implemented the prototype system on a public 
housing construction site in Singapore. It is noted that to trigger an alert 
when a worker enters the vicinity of an open edge with missing barri
cade, the system must be able to detect the worker and the missing 
barricade. As our previous studies have achieved an acceptable level of 
accuracy for worker detection (e.g., [13,17]), this study focuses on the 
detection of missing barricades. 

The rest of this study is organized as follows. This study commences 
by providing a review of related research works on FFH and computer 
vision for object detection in Section 2. Then, Section 3 describes our 
developed computer vision approaches. Next, a case study is used to 
validate the feasibility and effectiveness of the proposed approaches in 
Section 4. The contributions, limitations, and conclusions are discussed 
in subsequent sections. 

2. Literature review 

2.1. Studies on prevention of FFH 

According to the hierarchy of control [23], there are five general 
types of safety controls (in descending level of effectiveness): elimina
tion, substitution, engineering control, administrative control, and 
personal protective equipment (PPE). Within the context of FFH, there is 
a strong emphasis on the need for engineering controls (e.g., barricades 
and guardrails) to be implemented on construction sites. As highlighted 
earlier, barricades are required for all building edges and edges of ex
cavations, holes, floor openings, and roofs in construction sites to pre
vent FFH [68]. However, open edges remain a common problem in 
construction sites around the world [37,47,70]. This could be due to the 
unique, dynamic, and complex nature of the working environment in 
construction sites [54]. 

Despite the importance of barricades in preventing FFH and the 
difficulties in ensuring their installation on-site, past research on FFH 
tends to focus on fall arrest systems (a type of PPE) (e.g., 
[21,24,26,32,63]), and administrative control (e.g., [22]). There are 
also studies that developed technologies to facilitate the early identifi
cation of FFH hazards [67,71], including the use of BIM model for safety 
compliance checks during the planning phase. For example, Zhang et al. 
[71] developed a 4D BIM (3D and schedule) based safety rule checking, 
which can identify and eliminate potential fall hazards during the 
planning phase. Likewise, Qi et al. [53] expanded the industry founda
tion classes (IFC) hierarchy to facilitate compliance checks and optimi
zation of building design for preventing FFH accidents during the 
construction phase. Despite their usefulness, these technologies are used 
during the design phase and are not directly applicable to the con
struction phase, where FFH hazards arise as activities progress and 
change dynamically. 

With the increasing interest in using computer vision to solve con
struction safety problems, some studies use computer vision approaches 
for mitigating FFH risks in construction sites. For example, Fang et al. 
[17] developed a computer vision approach with Mask R-CNN to iden
tify construction worker traversing on structural supports. Then, an 
overlap detection module was used to determine relations between 
workers and structural support. Similarly, Fang et al. [12] applied a 
computer vision approach to identify workers not wearing a safety 
harness when working at height. However, to the best of our knowledge, 

there is no research that uses a computer vision approach to automati
cally detect missing barricades for the prevention of FFH accidents. An 
example of studies focusing on guardrails and barricades is the study by 
Navon and Kolton [51], who attached sensors to guardrails for inspec
tion of the installation, and warnings alert will be trigged when guard
rails were missed or different from the planned ones. Similarly, Zuluaga 
and Albert [76] use virtual prototyping methods to check bridge 
guardrails’ usage. Cheung and Chan [7] invented a Rapid Demountable 
Platform (RDP) device to prevent external workers from falling from 
height. These studies on barricades had not utilized computer vision. 

Thus, our review shows that barricade is an important safety control 
for the prevention of FFH, but the construction industry continues to 
face problems in preventing the occurrence of the missing barricade. 
Furthermore, despite the advancement of computer vision, it had not 
been used to detect missing barricades. 

2.2. Object detection and segmentation in construction 

A plethora of studies had used computer vision to detect objects in 
construction sites [12–15]. With significant advancements in deep 
learning and computer vision (e.g., Faster R-CNN, Yolov3, and SSD), 
they have been adopted to automatically identify various construction 
“objects,” such as workers, heavy equipment, and plants. For example, 
Fang et al. [12,13] employed an improved Faster RCNN model to detect 
workers and excavators in construction sites, which is able to achieve an 
accuracy of 91% and 95% for detection of workers and excavators, 
respectively. Son et al. [60] applied a deep residual network-152 for 
worker detection with varying poses and changing backgrounds in 
construction sites. The accuracy, precision, and recall of worker detec
tion were 94.3%, 96.03%, and 98.13%, respectively. Hou et al. [30] 
proposed an improved Mask R-CNN to simultaneously detect and 
segment object signatures in ground penetrating radar scans. The 
average accuracy (AP) of detection and segmentation was 58.64% and 
47.64%, respectively. Tang et al. [62] employed Faster R-CNN to detect 
workers, eye protection, face protection, foot protection, hand protec
tion, where the AP was 89.4%, 28%, 25.1%, 67.8%, 66.1%, respectively. 
Table 1 presents prior research works on deep learning and computer 
vision-based object detection in the construction industry. 

Although there has been significant progress in deep learning-based 
object detection, visual detection of construction objects [34] is still 
challenging due to various reasons such as camera movement and 
shaking, background clutter, intra-class variation, and occlusion [35]. 
These construction-specific challenges prevent the simplistic application 
of existing computer vision algorithms. Furthermore, unlike typical 
object detection, which detects specific types of objects with a more 
stable set of features, detecting a “missing object” involves more un
certainties in identifying the features of the missing object. Therefore, a 

Table 1 
A summary of prior works on deep learning and computer vision-based object 
detection in the construction industry.  

Target objects Methods Author 
(Year) 

Track components Yolov4 Guo et al. 
[28] 

13 types of moving object (e.g., 
workers, tower crane) 

Yolov3, SSD300, RetinaNet, 
FCOS, NAS-FPN, Faster R-CNN, 
TridentFast 

An et al. 
[1] 

Worker Yolo Son and 
Kim [61] 

Personal protective equipment 
(PPE) of workers (e.g., hard hat 
and vest) 

CNN-based classifiers (i.e., VGG- 
16, ResNet-50, and Xception) 

Nath et al. 
[36] 

Worker and excavator Yolov2 
Luo et al. 
[44] 

Worker and excavator Faster R-CNN 
Fang et al. 
[12,13]  
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reliable method is needed to detect missing objects under various pos
tures and scales in images. 

2.3. Object detection and segementation methods 

Many different methods for computer vision-based object detection 
were studied in the past two decades, and the number of publications 
has been growing exponentially in the last few years since the emer
gence of deep learning object detection methods [74]. In the early years, 
the Histogram of Oriented Gradients (HOG) method [49] was popular, 
and HOG detectors were used in many computer vision applications 
[18,45,66]. Computer vision-based object detection studies slowed 
down for a period until the increasing use of Graphics Processing Unit 
(GPU,) which enabled the adoption of convolutional neural networks 
(CNN) [40] after 2011. Since then, it started the deep learning era, and 
CNN evolved into a wide range of deep learning-based object detection 
methods, which can be classified into two main groups, namely “anchor- 
based” and “anchor-free” object detection model [9,73,75]. “Anchor- 
based” models can be further categorized into “two-stage detection” and 
“one-stage detection”. These different categories will be discussed 
below. 

In the “two-stage detection” approach, the model first proposes a set 
of regions of interests (ROI) follow by the second stage, where the model 
processes the proposed ROI and provides the final prediction. Whereas 
for a “one-stage detection,” the model directly detects over a dense 
sampling of possible locations or grids without the region proposal stage 
to provide the final prediction. In general, the “two-stage detection” 
model would be more accurate and better in handling scale variation, 
while the “one-stage detection” model would provide a faster inference 
speed [74, 33,38]. Some common “two-stage detection” models were 
those from the region-based convolutional neural networks (RCNN) 
family, with the Faster RCNN [56] model being more popular due to its 
capability to provide a better balance between both accuracy and 
inference speed. Faster RCNN was applied in several studies in different 
industries to address real-time challenges with promising results 
[20,42,58]. For “one-stage detection”, SSD [43] and YOLO [55] were 
two popular models that were widely used due to their fast inference 
speed. 

While “anchor-based” models have been widely adopted, their reli
ance on pre-defined anchor boxes determined by a set of hyper
parameter, e.g., scales and aspect ratios, has limited their ability to 
address scale variation problems in object detection. In recent years, 
many studies using “anchor free” models have started to emerge 
[41,64,73,75] in the hope to address this problem. For example, Zhou 
et al. [75] proposed an anchorless-based approach, CenterNet, which 
has proven to be simpler, faster, and more accurate than corresponding 
bounding box-based approaches. To achieve higher accuracy, CenterNet 
is adopted in this study to detect missing barricades as it has out
performed current state-of-the-art object detection on the COCO data
base [73,75]. 

Background subtraction is widely used in computer vision applica
tions involving video taken by fixed cameras [11] (e.g., traffic moni
toring and industrial machine vision). Background subtraction can 
segment static and moving foreground objects in a video stream [5]. 
CNN was employed successfully for background initialization, fore
ground detection, and developing deep learned features. For example, 
Babaee et al. [4] proposed a novel deep learning method for background 
subtraction from video sequences. Likewise, Kim et al. [39] proposed a 
hybrid framework by integrating background subtraction and deep 
learning for person detection. In this work, background subtraction was 
applied to find the region of interest. 

Many segmentation methods such as Mask R-CNN and U-Net can be 
used to segment static and moving foreground objects from a video 
stream [3,10]. Compared with other segmentation methods, U-Net has 
the following advantages: (1) the model allows for the use of global 
location and context at the same time; (2) it works with very few training 

samples and more accurate results for segmentation tasks [57]. Thus, U- 
Net is adopted as the backbone for our MCA method to segment barri
cades from video streams. 

3. System overview 

To prevent workers from falling off open edges at the construction 
level of a building, it is important to be able to detect missing barricades 
so that workers working near the open edges can be monitored. As 
shown in Fig. 1, the real-time video streaming from a surveillance 
camera mounted on tower cranes will be fed into the vision-based 
detection module. Then, the vision-based detection module will detect 
missing barricades if the barricades are removed from the building 
edges. Once the missing barricade is detected and a worker is detected in 
the hazardous area near the open edge, the system can alert site 
personnel of the unsafe activity and capture the incident as a statistic. 

If the missing barricade is detected and a worker is detected in the 
hazardous area, then a “worker near open edges” event will be detected 
as an unsafe behavior. In this instance, a warning alert will be generated 
and sent to site personnel (e.g., site managers, supervisors, and workers) 
using Telegram1 so that site personnel can take action immediately to 
prevent an FFH accident. Furthermore, statistics about workers near 
open edges can be collected to help managers assess the effectiveness of 
their safety management interventions. 

4. Vision-based missing barricade detection 

In this study, two approaches or strategies for detecting missing 
barricades are developed and implemented. These approaches include 
(1) masks comparison approach (MCA); and (2) missing object detection 
approach (MODA). The approaches were developed to solve the missing 
barricade problem faced by the developer and contractor that the au
thors were collaborating with in this study. The collaborators described 
their work processes and specified their requirements for the computer 
vision system. Based on their requirements, MCA was first developed 
and implemented. MODA was subsequently developed and imple
mented to solve the problems identified when implementing MCA. The 
details of these two approaches are described as follows. 

4.1. Masks comparison approach (MCA) 

Based on the inputs from the industry collaborators, the installation 
of barricades is part of the construction process, and it is a requirement 
for all barricades to be installed before workers are allowed to work on 
the construction level without a fall protection system. This requirement 
is aligned with safety regulations which require all open edges to be 
barricaded [47,68]. In fact, barricades are installed to the formwork that 
is being lifted to the next level to ensure that the barricades are present 
once construction of the next level starts. Inspection of the barricades at 
the construction level is one of the required tasks for work to proceed on 
the construction level, but the inspection is only at a specific instance in 
time. Site personnel face problems in ensuring that the barricades are 
not removed in an unplanned and unsafe manner after construction 
activities start on the construction level. There had been instances of 
workers removing barricades prematurely out of convenience. Besides, 
as part of the construction process, removal of the barricades is neces
sary, e.g., during the installation of precast walls. During these haz
ardous instances, the site supervisor needs to be alerted to ascertain that 
the workers have put on their fall protection system prior to barricade 
removal. Based on the work process, where the barricades are installed 
at the beginning of the construction cycle for each level, the MCA 
approach detects missing barricades by comparing the mask at 

1 Telegram is a free chat and instant messaging service that is available across 
different platforms, https://telegram.en.softonic.com/ 
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consecutive timestamps t and t + 1. Therefore, a key assumption of MCA 
is that barricades are installed at the beginning of the construction cycle 
for each level. 

The basic concept underlying MCA is to use barricade present in past 
frames as a reference to identify missing barricades in the current frame. 
More specifically, during the training stage, a barricade segmentation 
model was constructed using a training image dataset, which consists of 
images with annotated barricade masks. The masks are used to indicate 
each pixel location as part of a barricade or not. In the inference stage, it 
first applies the trained barricade segmentation model to detect the 
presence of barricades in each frame and generate the barricade mask. 
Then, it compares the barricade mask between consecutive frames to 
identify whether there are missing barricades. 

To ensure that the reference barricade mask continues to be relevant, 
it needs to be updated as construction work progresses. The updating of 
the reference mask is implemented using an ‘exponential smoothing 
function’. In doing so, exponential smoothing is used to update the 
previous mask. The workflow of MCA is described as follows and illus
trated in Fig. 2. 

Step 1: For the first frame at the time index t, segment barricade mask 
as mt. 

Step 2: For the next frames starting from the time index t + 1, 
segment barricade mask as mt+1. 

Step 3: Subtract the barricade mask at the current frame mt+1 from 
that in the previous frame mt to get missing barricade mask, ml = mt −

mt+1. 
Step 4: Update the previous barricade mask using an exponential 

smoothing function as mt = 0.9 * mt + 0.1 * mt+1. 
Step 5: Find the coordinate of the missing barricade mask (xmax, ymax, 

xmin, ymax), ml as the bounding box of the missing barricade. 
Step 6: Repeat Steps 2–5 for the rest frames in the video streaming. 
Fig. 2 presents the workflow of our MCA method. We segment the 

barricade mask in the time indices t (Fig. 2(a)) and t + 1 (Fig. 2(b)), 
respectively. Then, we subtract the barricade mask at the time index t +
1. Thus, we can get the missing barricade mask, as noted in Fig. 3(c). An 
example is presented to illustrate the workflow, as illustrated in Fig. 3. 

As noted above, U-Net, one of the most popular object segmentation 
approaches, can achieve more accurate results with fewer training im
ages for the task of object segmentation. Thus, U-Net is used in this study 
to segment the barricades in the video streams. U-Net, an end-to-end 
fully convolutional network, was proposed by Ronneberger et al. [57], 
which contains two key parts. The first part is a downsampling strategy 
with the max-pooling operator upon receiving the input image and is 

referred to as the encoder or the contraction path. The second part is an 
asymmetric expansion of the feature map resulted from the first part 
with the upsampling operator and is referred to as the decoder or the 
expansion path. The model was trained with an image dataset with a 
resolution of height 320 pixels and width 576 pixels, 100 epochs with 
200 steps per epoch using the Adam optimizer at a learning rate of 
0.001. More details on U-Net can be found in Ronneberger et al. [57]. 

4.2. Missing object detection approach (MODA) 

MODA was developed after identifying that the main cause of false 
positive detections of MCA is the excessive shaking of the CCTV cameras 
on the tower crane, which will be discussed in more detail in the case 
study. Furthermore, from a practical standpoint, the labeling of seg
mentation data is expensive and resource-intensive, making it difficult 
to increase the size of the annotated dataset to improve the accuracy of 
the MCA model. Thus, MODA was developed based on the requirement 
to overcome the problem of detection errors arising from camera 
shaking and to facilitate the accumulation of training dataset. At the 
same time, MODA removes the need to assume that the barricades are 
installed at the beginning of the construction cycle for each level, which 
is the key assumption of MCA. 

The key idea of the MODA method is to treat the ‘missing barricade’ 
as a type of object and exploit deep learning methods to directly detect 
the object in the image. More specifically, in the training stage, the 
approach requires a training image dataset consisting of images with 
annotated missing barricade regions (via four corners of each region). In 
the inference stage, it detects the “missing object” in each frame, by 
identifying four corners of the missing barricade region. Fig. 4 presents 
the workflow of our MCA method. 

A key point detection approach, CenterNet, is used to detect missing 
barricades at the construction level of the building in our case study. 
CenterNet is an anchor-free and key point-based detection model, which 
outperformed current state-of-the-art object detection approaches when 
tested on the MS COCO database [73,75]. It detects an object first as a 
center point and then regresses the object bounding box’s height and 
width with respect to the center point. The center point is used to predict 
other object properties, such as object height and width. The model 
feeds the input image to a fully convolutional network that generates a 
heatmap, which is further used to obtain three outputs. First, peaks in 
this heatmap are used as predicted object centers. Second, image fea
tures obtained at each peak are used to predict the objects bounding box 
height and width. Third, offset values are predicted to refine the 

Fig. 1. Workflow of research approach.  

Fig. 2. Workflow of MCA.  
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predicted centers locations, which are incurred due to the down
sampling process in the model. In this study, Deep Layer Aggregation-34 
(DLA-34) is used as the backbone network for the fully convolutional 
network to generate the heatmap. To extract the peak of each heatmap, 
all responses with a value higher or equal to its 8-connected neighbors 
are detected, and the top 100 peaks are retained. More details about the 
approach for peak extraction can be found in Zhou et al. [73,75]. 

To detect missing barricades using CenterNet, we considered each 
barricade as a set of four corner keypoints, each of which is parame
terized by an offset to the center point. To refine the keypoints, we 
further estimate the barricade’s heatmap using standard bottom-up pose 
estimation [6]. The CenterNet model is trained by exploiting three types 
of losses, loss of focal, loss of center offset, and loss of bounding box size, 
which are defined as follows. 

Loss of focal is calculated using on Eq. (1). 

Lk =
− 1
N

∑

xyc

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(

1 − Ŷ xyc

)α

log
(

Ŷ xyc

)

if Yxyc = 1

(
1 − Yxyc

)β
(

Ŷ xyc

)β

otherwise

log
(

1 − Ŷ xyc

)

otherwise

(1) 

where, α and β are hyper-parameters of the focal loss, which are 
based on Zhou et al. [73,75]. 

The loss of center offset Loff is noted in Eq. (2). 

Loff =
1
N

∑

p

⃒
⃒
⃒
⃒Ôp̃ −

(p
R
− p̃

) ⃒
⃒
⃒
⃒ (2) 

The loss of bounding box size is noted in Eq. (3). 

Lsize =
1
N
∑N

k=1

⃒
⃒
⃒
⃒Ŝpk − sk

⃒
⃒
⃒
⃒ (3)  

5. Case study 

5.1. Background 

To evaluate the feasibility and effectiveness of the approach, a public 
housing construction site in Singapore was used as a case study. In this 
case study, we collected data from two specific CCTV cameras covering 
one 20-story residential block under construction. The construction used 
precast and cast-in-situ technology. The approximate distance between 
the camera and the construction floor varies between 6.6 m to 17.8 m as 
the tower crane is jacked up when construction progresses, as illustrated 
in Fig. 5. Therefore, the size of barricades in the video footage will 
change when the distance between the camera and the construction 
floor varies, i.e., a multi-scale problem exists. Two sample snapshots of 
the CCTV images are presented in Fig. 6. Data was collected over a 
period of five months, including March, July, August, September, and 
October 2020. The break in the collection of data in April, May and June 
2020 is due to the stop-work order arising from the COVID-19 pandemic. 
March, July, August, and September 2020 were set as the training 

Fig. 3. An example of the workflow of MCA.  

Fig. 4. Workflow of MODA.  
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period, and data from this period were used to train models. Videos from 
October 2020 were used as the test data, and the data from this period 
was unseen by trained models. Both MCA and MODA methods were 
implemented on a server equipped with Intel i7 9th Generation CPU 
Computer with Nvidia GeForce RTX 2070 graphics card. 

5.2. Evaluation performance metrics 

To evaluate the performance of our proposed approach in this case 
study, three common criteria are used, which are Average Precision 
(AP), Average Recall (AR), and detection speed frames per Second (fps) 
[30,31,61]. AP measures the area under the Precision-Recall curve, and 
AR measures the area under Recall-Intersection over Union (IOU) 
threshold curve where the y-axis is Recall and x-axis is IOU threshold. In 
this study, the IOU is set to 0.5 as used COCO dataset. As illustrated in 
Fig. 7, if the IOU between the ground-truth bounding box and the pre
dicted bounding box is greater than 0.5, then the prediction bounding 
box is identified as a true positive. Otherwise, it will be identified as a 
false positive. AP with an IOU threshold of 0.5 is abbreviated as AP0.5 

and AR with an IOU threshold of 0.5 is abbreviated as AR0.5 in our 
following results. 

5.3. Solution #1: MCA for missing barricade detection 

5.3.1. Data annotation 
To validate the effectiveness and feasibility of the MCA, an image 

dataset is needed for model training and testing. To reduce the potential 
bias in selecting the images, the images in the image dataset were ob
tained from different viewpoints, at varying scales, poses, and illumi
nation. Fig. 8 presents examples from our image dataset, including 
missing barricades and barricades. Then, the created image dataset was 
randomly divided into a training dataset and a testing dataset. In this 
study, our created database has 853 images, out of which 764 images 
were used for training, and 89 images were used for testing. Prior to 
testing, the created training dataset was labeled to annotate the barri
cade in the image using an annotation tool (e.g., ‘LabelImg’). An 
example of image annotation is presented in Fig. 9. 

5.3.2. Detection result 
Table 2 presents the detection results of MCA. Dice coefficient (DC) is 

a metric to evaluate the performance of the object segmentation model, 
and it is measured by the area of overlap divided by the total number of 
pixels in both the ground truth and the predicted label [27,59]. DC can 
be computed using the following equation, 

DC =
2N0

NR + NI
(4) 

whereN0 is the number of overlap pixels; NR and NI are the numbers 
of pixels of the ground-truth and the predicted label, respectively. 

From Table 2, we can conclude that the barricade can be accurately 
detected, but the missing barricades from video streaming are not able 
to be detected by MCA. In addition, the detection speed of MCA is 4.25 
fps, as it needs more computing resources to extract features, which may 
not meet the requirement of real-time detection in construction sites via 

Fig. 5. Site tower crane jack-up cycle.  

Fig. 6. Snapshots of CCTV images.  

Fig. 7. Rules for evaluation of prediction results.  
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video streaming. Fig. 10 presents examples of true positive detection and 
false positive detection results. 

As highlighted earlier, after verifying the detection results, we found 
that the key reason affecting the accuracy of MCA is “Camera shaking”. 
An example of the false positive detection due to the shaking of the 
camera is presented in Fig. 11. Tower cranes have the tendency to 
vibrate when it is lifting a load. When it vibrates, the camera mounted on 
top of the crane shakes. In our case study, the camera shakes during 
almost every lift, but the severity of the problem varies. When the 
camera is shaking, MCA will cause a false positive to be detected as the 
originally detected barricades will move out of positions when the 
camera shakes. When the detected barricades move out of positions, the 
previously registered barricade will be deemed as not present and will 
cause a missing barricade to be detected, i.e., false positive will occur. 

Another practical challenge of the MCA method is that it is resource 
intensive and time-consuming to label segmentation data since the MCA 
method requires dense pixel-level annotations [72]. Therefore, it is not 
feasible to label a large amount of training data for the MCA model, 
which influences its detection accuracy due to insufficient annotated 
data for the model training. 

5.4. Solution #2: MODA for missing barricade detection 

To address the key problem of “camera shaking” and overcome the 

difficulties in accumulating labeled datasets for training, we developed 
MODA and implemented it in our case study. 

5.4.1. Data annotation 
A dataset with 1689 images was used to train and test the MODA 

model. More specifically, 1560 images were used for training, and 129 
images were used for testing. In this study, four key points are used to 
demarcate a missing barricade at its four corners. As four corners points 
of every missing barricade may not present themselves clearly, there 
needs to be a standardized way of labeling thee missing barricade four 
corner points. The following two rules are considered during data 
annotation:  

• Cut back the corner point if the corner point of the missing barricade 
is occluded by an opaque object, as shown in Fig. 12(a), Fig. 12(b) 
and Fig. 12(c).  

• Retain the corner point of the missing barricade if the corner point is 
occluded by another translucent barricade. 

Fig. 12 shows how the missing barricade was annotated with two 
general rules. 

5.4.2. Detection result 
Table 3 presents the detection results for missing barricades at the 

construction level using these two approaches. Based on the results, we 
can conclude that MODA can achieve a higher accuracy in the detection 
of missing barricade in images. In addition, the MODA has a higher 
detection speed compared with MCA. 

Figs. 13 and 14 present examples of correct detection and error 
detection of MODA, respectively. Here, the blue bounding box high
lighted in Fig. 13 is a danger area (near the open edge) when the 
barricade was missed. We found that the main reason for error detection 
is that the color of the barricade is similar to the background. However, 
the issue of “camera shaking” had been minimized. 

Fig. 8. Examples of images in the image dataset.  

Fig. 9. Example of image annotation, where the green color indicates the annotated barricade in the image. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Detection results using the MCA.  

Performance metrics AP0.5 AR0.5 Dice 
coefficient 

Detection speed 
(fps) 

Barricade Segmentation – – 0.81 – 
Missing barricade 

detection 
0.20 0.60 – 4.25  
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6. Discussion, limitations and future works 

In relation to the first research question on possible computer vision- 
based approaches for detection of missing barricades, this study iden
tified and evaluated two computer-vision approaches (MCA and MODA) 
to detect missing barricades. The approaches aim to provide site man
agement with an automatic mechanism to proactively identify missing 
barricades and take immediate action to mitigate the likelihood of FFH. 
The automatic nature of the approaches improves the efficiency and 
effectiveness of the safety inspection and monitoring processes to pre
vent missing barricades and hence reduce the risk of FFH incidents. In 
addition, the system can send warning alerts to the site supervisor and 

relevant workers. In this way, the approaches can be used by site 
management to highlight potential hazards to relevant site personnel. 
The tight monitoring by the system will encourage better safety 
compliance. 

The second research question is about the accuracy of the identified 
approaches. The evaluation in this study shows that the AP0.5 and AR0.5 

of MCA were 0.20 and 0.60, respectively. The AP0.5 and AR0.5 of MCA 
were 0.579 and 0.736, respectively. Thus, MODA was more accurate in 
the context of this study. 

The third research question is about the feasibility of the two ap
proaches. The study uncovered several practical challenges in imple
menting the approaches, especially MCA. MODA can address the 
limitations of camera sharking on construction sites and the experi
mental results show that MODA has better performance than MCA. 
However, MCA helps detect fine-grained missing objects when the 
camera is stationary because it is a pixel level-based object detection 
approach, especially when the missing object is not easily labeled using 
the bounding box. For example, the components of scaffolding are 
missing during operation, MCA can detect this issue more easily by 
computing the difference between the two consecutive frames. MODA is 
useful in detection of missing object when the camera is moving as this is 
a key point-based object detection approach. For example, if we use 
unmanned aerial vehicle (UAV) for safety inspection, we can use MODA 
to process the UAV videos to detect missing objects when the missing 
object is easily labeled using a bounding box. MCA, though involves a 
more intensive labelling process, is more generalizable to new sites as 
the model remembers how a barricade looks like and could be used to 
find barricade on a new site if the barricade used on the new site is 
similar. However, since MODA remembers the environment when a 
barricade is missing, and construction sites environment is dynamic, 
MODA is probably less generalizable to new sites. Thus, both MODA and 
MCA have their pros and cons, but based on the results of this study, 
MODA appears to be more feasible for construction sites that are similar 
to the site in this study. 

Fig. 10. Example of detection results: True positive detection (left); True and False positive detections (right).  

Fig. 11. Example of false detection due to camera shaking.  
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The contributions of this study are as follows. Firstly, despite the 
perennial problem of missing barricades, there has been an absence of 
study that uses computer vision approaches to detect missing barricades 
automatically for safety compliance checks. To address this challenge, 
this study has demonstrated that the use of computer vision, especially 
MODA, can accurately identify missing barricades so that workers near 
open edge can be accurately detected. Our proposed approach provides 
an automated means to monitor and identify worker’s unsafe behavior 
for prevention of FFH accidents, which will also help produce more 

consistent and comprehensive behavior data to promote behavior-based 
safety (BBS) in construction. Secondly, as evaluated in our case study, 
the MODA method can better detect object with varying size in images. 
In addition, the MODA method can address the limitations of camera 
sharking on construction sites. The experimental results shown in 
Table 3 have demonstrated that MODA has better performance than 
MCA. Therefore, the MODA is more feasible to be implemented on 
construction sites and achieve a higher accuracy for detecting missing 
barricades. However, the two approaches may perform differently in 
other construction scenarios and further evaluation is necessary. 

While this study contributes to identifying missing barricades on 
construction sites, we need to highlight the following limitations, which 
will be addressed in our future works. Firstly, our model is tested in 
limited construction scenarios, the generalization of our model still 
needs to be improved further. In our study, we collect training and 
testing dataset from two specific CCTV cameras covering one 20-story 
residential block under construction. In this instance, two limited con
struction scenarios were used as testing conditions. In our future works, 
a larger image dataset from different construction projects will be 
created and used for model training and testing. Secondly, our model is 

Fig. 12. Example of annotations of the missing barricade: (a) missing barricade with one corner occluded by another transparent barricade; (b) missing barricade 
with two corner points occluded by an opaque object; (c) missing barricade with two points occluded by hanging load; (d) missing barricade with no points occluded. 

Table 3 
Missing barricade detection comparison between the MCA method and the 
MODA method.  

Method performance 
metrics 

Masks comparison 
approach (MCA) 

Missing object detection 
approach (MODA) 

Average Precision 
(AP) 

0.200 0.579 

Average Recall (AR) 0.600 0.736 
Detection speed (fps) 4.25 12.50  

Fig. 13. Examples of correct detection of missing barricade (TP is True Positive).  

Fig. 14. Example of error detection of missing barricade (FN is False Negative).  
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trained with a relatively small database and the accuracy of the models 
can still be improved. However, when compared with other recent 
relevant studies, e.g., Li et al. [31] and Hou et al. (2020), the AP0.5 and 
AR0.5 of 57.9% and 73.6%, respectively, are respectable. In Li et al. [31], 
an improved YOLOv3 is proposed for rebar counting with AP0.5 of 
61.8%. Likewise, in Hou et al. (2020), an improved Mask R-CNN is 
proposed for GPR signature detection and segmentation. The detection 
AP and segmentation AP were 58.64% and 47.64%, respectively. 
Nevertheless, we believe that the accuracy of our two proposed ap
proaches can be improved with the help of a larger image dataset. 

7. Conclusion 

This study proposes two computer vision approaches including the 
masks comparison approach (MCA), and the missing object detection 
approach (MODA) for real-time detection of missing barricades at con
struction sites. A public housing construction project in Singapore was 
used to assess the effectiveness and feasibility of the proposed ap
proaches. We initially implemented MCA, which is based on a temporal 
comparison of barricade segmentation. However, we found that the 
approach does not perform well when the camera on the tower crane 
shakes. Furthermore, the segmentation approach used in MCA made it 
costly to accumulate a large amount of training and testing data. Thus, 
we developed MODA, which detects missing barricades as an object. The 
results presented in this study demonstrated that MODA can achieve 
better performance than MCA. The average precision and average recall 
of missing barricades using MODA were found to be 57.9% and 73.6%, 
respectively, which are comparable with other recent works on the use 
of computer vision in construction sites. We suggest that our MODA- 
based computer vision system can be used to supplement existing 
safety management measures to reduce the likelihood of FFH accidents. 
Moreover, the statistics collected from our proposed approach can be 
used to facilitate implementation of behavior-based safety management 
at construction sites. 
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